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We numerically study a vortex ring impacting a flat wall with an angle of incidence
θ � 0◦ in three dimensions by using the lattice Boltzmann equation. The hydrodynamic
behaviour of the ring–wall interacting flow is investigated by systematically varying
the angle of incidence θ in the range of 0◦ � θ � 40◦ and the Reynolds number in the
range of 100 � Re � 1000, where the Reynolds number Re is based on the translational
speed and initial diameter of the vortex ring. We quantify the effects of θ and Re
on the evolution of the vortex structure in three dimensions and other flow fields
in two dimensions. We observe three distinctive flow regions in the θ–Re parameter
space. First, in the low-Reynolds-number region, the ring–wall interaction dissipates
the ring without generating any secondary rings. Second, with a moderate Reynolds
number Re and a small angle of incidence θ , the ring–wall interaction generates a
complete secondary vortex ring, and even a tertiary ring at higher Reynolds numbers.
The secondary vortex ring is convected to the centre region of the primary ring
and develops azimuthal instabilities, which eventually lead to the development of
hairpin-like small vortices through ring–ring interaction. And finally, with a moderate
Reynolds number and a sufficiently large angle of incidence θ , only a secondary
vortex ring is generated. The secondary vortex wraps around the primary ring and
propagates from the near end of the primary ring, which touches the wall first, to the
far end, which touches the wall last. The rings develop a helical structure. Our results
from the present study confirm some existing experimental observations made in the
previous studies.
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1. Introduction
Vortex–wall interaction is ubiquitous in unsteady boundary-layer separation and

wall-bounded turbulent flows. When a vortex is convected near a no-slip solid wall,
it often instigates a viscous response in the vicinity of the wall (Saffman 1979; Lugt
1983; Kiya, Ohyama & Hunt 1986; Lim & Nickels 1995), which leads to various
complicated flow phenomena. These phenomena include wall-generated vorticity,
unsteady boundary separation, vertical-flow instability, separated vortex layer roll-up,
as well as the interaction-induced aerodynamic forces on the wall. With a sufficiently
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high Reynolds number, vortex–wall interaction leads to vortex breakdown, which
is an important mechanism in transition to turbulence. Flows with vortex–wall
interaction have fascinated many for a long time because of their importance to
our understanding of topological changes in evolving vortex structures and coherent
structures in turbulence.

There have been numerous experimental and numerical studies of vortex rings
impinging on a flat wall with a normal angle of incidence. Numerous experimental
studies (Boldes & Ferreri 1973; Cerra & Smith 1983; Yamada et al. 1985; Walker
et al. 1987; Lim, Nickels & Chong 1991; Chang 1992; Orlandi & Verzicco 1993; Chu,
Wang & Hsieh 1993; Chu, Wang & Chang 1995; Swearingen, Crouch & Handler
1995; Fabris, Liepmann & Marcus 1996) have shown that, when a vortex ring
approaches a solid wall, it induces a radial flow that, due to the no-slip condition at
the wall, creates a boundary layer with vortices of opposite signs. The vortex ring
expands its toroidal radius as it is closing in to the wall, while the vortex core shrinks,
and the vorticity at the ring core is intensified due to vortex stretching. Subsequently,
the boundary layer undergoes separation and growth, leading to ejection of vorticity.
With a sufficiently large Reynolds number, a secondary vortex ring, and possibly a
tertiary one, is generated from the boundary layer at the wall. The detailed velocity
field and the stability of the secondary ring have been investigated numerically and
through stability analysis for a vortex ring impacting a wall at normal incidence
(Lim et al. 1991; Orlandi & Verzicco 1993; Chu et al. 1995; Swearingen et al. 1995;
Chang, Hertzberg & Kerr 1997; Luton & Ragab 1997; Naguib & Koochesfahani
2004). Orlandi & Verzicco (1993) numerically studied the axisymmetric flow at
564 < Re < 3000 and the fully three-dimensional flow at Re = 1250 to investigate
the effects of azimuthal instabilities. They observed the high-wavenumber instabilities
originating in the compression phase of the secondary ring within the primary one,
and were able to explain the strong instability of the secondary ring by analysing the
rate-of-strain tensor and vorticity alignment. Swearingen et al. (1995) studied both
perturbed and unperturbed evolutions of the secondary ring with Re ≈ 645. They
analysed the linear evolution of the secondary vortex-ring instability by using a quasi-
steady approximation and found that the secondary vortex ring is unstable when
subject to long-wavelength perturbations. Chu et al. (1995) solved the Navier–Stokes
equation by using the vorticity-streamfunction formulation for the axisymmetric flow
with 500 � Re � 2000 to obtain the wall-pressure distribution and total surface force
on the wall. More recently, Naguib & Koochesfahani (2004) combined a velocimetry
measurement with the solution of Poisson’s equation for the axisymmetric flow
to study the wall-pressure field and flow structures for an axisymmetric vortex ring
impinging on a flat wall with Re =1860. The flow behaviour of a vortex ring impacting
on a flat wall with a normal incidence has been extensively studied experimentally,
numerically and theoretically. Comprehensive reviews are given by Shariff &
Leonard (1992), Lim & Nickels (1992), Doligaski, Smith & Walker (1994) and
Verzicco & Orlandi (1996b).

While there has been a considerable number of studies on normal impacts of a
vortex ring on a flat wall, little has been done for oblique impacts. The earliest work,
to our knowledge, is an experimental study of a vortex ring impacting an inclined flat
wall by Lim (1989), who observed the formation of bi-helical vortex lines around the
circumferential axis of the ring on both sides of the symmetric plane perpendicular
to the flat wall. Verzicco & Orlandi (1994) numerically investigated the same problem
with the angle of incidence θ = 38.5◦ and Re = 600. They showed that the secondary
vorticity generated at the wall accumulates in the region of the ring furthest away
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from the wall and forms a vortex loop, which moves away from the wall. As the
ring is closing in to the wall, the region which is touching the wall first (referred
to as the ‘near end’ hereafter) is subjected to a strong stretching, which intensifies
the vorticity in the core, while the region furthest away from the wall (referred to
as the ‘far end’ hereafter) remains almost intact at the beginning of the ring–wall
interaction process, provided that the oblique angle of incidence θ is sufficiently large.
Consequently, the pressure is high at the near end, but low at the far end. The pressure
gradient induces a convection along the toroidal axis from the near end to the far
end, which is responsible for accumulating vorticity at the far end. A subsequent work
of Mammetti, Verzicco & Orlandi (1999) confirmed the observations of Verzicco &
Orlandi (1994) experimentally and numerically with Re =1000. More recently, Liu
(2002) used the vortex particle-in-cell method, a hybrid Eulerian–Lagrangian method,
to simulate the unsteady shear flow induced by the interaction of a vortex ring and
a flat wall with θ = 38.5◦ and Re =600 and 1000. Liu observed the development of
the primary vortex ring and the pattern of the secondary vorticity generation, and
compared the basic feature of the oblique impingement with the experimental results
of Lim (1989). Liu also showed that, at a higher Reynolds number of 1000, the
helical winding of vortex lines becomes more prominent, and the secondary vortex
core is thicker. We note that most of the previous studies are restricted to a fixed
angle of incidence θ and a very limited range of the Reynolds number Re. There
is no systematic investigation on the dependence of the vortex–wall interaction, the
evolution of vortex structures, and flow behaviour on both θ and Re.

In this work, we will systematically investigate the three-dimensional flow structures
of a vortex ring impacting a flat wall with different angles of incidence and Reynolds
numbers by using the lattice Boltzmann (LB) method (Yu et al. 2003). We intend to
understand the mechanisms responsible for various flow phenomena induced by the
vortex–wall interactions in the vortex-impinging flow by quantifying the effects of the
impinging angle θ and the Reynolds number Re on the evolution of the flow fields
around the ring–wall interaction region.

The remainder of this paper is organized as follows. In § 2, we provide a brief
description of the lattice Boltzmann equation (LBE) with a multiple-relaxation-time
(MRT) collision model (d’Humières 1992; Lallemand & Luo 2000, 2003; d’Humières
et al. 2002) and relevant initial and boundary conditions. We validate our code by
comparing the LB results with the existing results for the flow of a vortex ring
impacting a wall at normal incidence, i.e. θ = 0◦, and Re = 830 and 1000. A grid
convergence study is carried out to ensure that an adequate mesh size is used in our
simulations. In § 3, we present our results on the flow of a vortex ring impinging
on a no-slip wall with the angle of incidence 0◦ � θ � 40◦ and the Reynolds number
100 � Re � 1000. We study the evolution of three-dimensional flow patterns and two-
dimensional vorticity and pressure fields depending on θ and Re. Finally, we conclude
the paper with a summary in § 4.

2. Numerical method
In this section we will briefly describe the LBE (cf. a review by Yu et al. 2003) with

an MRT collision model (d’Humières 1992; Lallemand & Luo 2000, 2003; d’Humières
et al. 2002). We will discuss the initial and boundary conditions for the flow of the
vortex–wall interaction and their implementation in the LB simulations. We will also
validate the model with existing data.
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2.1. Lattice Boltzmann equation

The LBE is derived from the Boltzmann equation to solve near-incompressible flows
(He & Luo 1997b,c). We will use the generalized lattice Boltzmann equation (GLBE),
or the LBE with the MRT collision model (d’Humières 1992; Lallemand & Luo 2000;
d’Humières et al. 2002). The evolution equation for the MRT–LB model of Q velocities
on a D-dimensional lattice xi ∈ δx�D with discrete time tn ∈ δt�0 := δt{0, 1, . . .} can
be concisely written as

f (xi + cδt , tn + δt ) − f (xi , tn) = −M−1 · Ŝ ·
[
m − m(eq)

]
, (2.1)

where M is a Q × Q matrix which linearly transforms the distribution functions
f ∈ � ≡ �Q to the velocity moments m ∈ � ≡ �Q,

m = M · f , f = M−1 · m, (2.2)

and Ŝ is a non-negative Q × Q diagonal relaxation matrix (d’Humières 1992;
Lallemand & Luo 2000, 2003; d’Humières et al. 2002). The boldface symbols denote
the following column vectors:

f (xi + cδt , tn + δt ) = (f0(xi , tn + δt ), . . . , fb(xi + cbδt , tn + δt ))
T,

f (xi , tn) = (f0(xi , tn), f1(xi , tn), . . . , fb(xi , tn))
T,

m = (m0(xi , tn), m1(xi , tn), . . . , mb(xi , tn))
T,

m(eq) =
(
m

(eq)
0 (xi , tn), m

(eq)
1 (xi , tn), . . . , m

(eq)
b (xi , tn)

)T
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

where T denotes the transpose operation and b := (Q − 1).
In this paper, we use a nineteen-velocity model in three dimensions, denoted as

the D3Q19 model (d’Humières et al. 2002). The discrete velocities of the model
{ci |i = 0, 1, . . . , 18} are

ci =

⎧⎪⎨
⎪⎩

(0, 0, 0) c, i = 0,

(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, i = 1, 2, . . . , 6,

(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c, i = 7, 8, . . . , 18,

(2.4)

where c := δx/δt . The specific ordering of moments used here for the D3Q19 model
is (d’Humières et al. 2002; Lallemand & Luo 2003):

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz, mx, my, mz)
T,

(2.5)

where ρ is the mass density; jx = ρux , jy = ρuy and jz = ρuz are x, y and
z components of the flow momentum j := ρu, respectively, which are the conserved
moments in the system. Other moments are non-conserved, and their equilibria
are functions of the conserved moments ρ and ρu in the system (d’Humières
1992; Lallemand & Luo 2000, 2003; d’Humières et al. 2002). With the above
ordering of moments, the corresponding diagonal relaxation matrix of relaxation
rates {si |i = 0, 2, . . . , 18}, si ∈ (0, 2), ∀i, is

Ŝ = diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16). (2.6)

The parameters s2, s4, s10 and s16 do not have any direct effect on the large-scale
hydrodynamic behaviour of the model; however, they must satisfy the stability
criterion that si ∈ (0, 2) ∀ i, and they can affect the stability of the model (Lallemand &
Luo 2000; d’Humières et al. 2002). The values of these relaxation rates optimized for
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the linear stability (Lallemand & Luo 2000) are given by d’Humières et al. (2002):
s1 = s4 = 1.19, s2 = s10 = 1.4 and s16 = 1.98, which will be used in our simulations. The
relaxation rates s1 and s9 = s13 determine the bulk viscosity ζ and the shear viscosity
ν, respectively. For the D3Q19 model with the particular ordering of moments given
by (2.5), the transformation matrix M is given by d’Humières et al. (2002).

We can decompose the density ρ into its mean ρ̄ and fluctuation δρ, i.e.

ρ := ρ̄ + δρ. (2.7)

To reduce the effect of round-off error, we set ρ̄ = 1, and only consider the density
fluctuation δρ in simulations. In addition, we use j = ρ̄u to reduce compressibility
effects (He & Luo 1997a). Thus the conserved quantities in an ‘athermal’ LB model
and the corresponding equilibria are

δρ(eq) = δρ =
∑

i

fi, j (eq) = j := (jx, jy, jz) = ρ̄u =
∑

i

fi ci . (2.8)

For the athermal D3Q19 model in which the internal energy is not a conserved
quantity, the equilibria for non-conserved moments are (d’Humières et al. 2002):

e(eq) = −11δρ + 19
(
j 2
x + j 2

y + j 2
z

)
, (2.9a)

ε(eq) = −3δρ − 11

3

(
j 2
x + j 2

y + j 2
z

)
, (2.9b)

q(eq) =
(
q (eq)

x , q (eq)
y , q (eq)

z

)
= − 2

3
(jx, jy, jz), (2.9c)

p(eq)
xx = 1

3

[
2j 2

x −
(
j 2
y + j 2

z

)]
, p(eq)

ww = j 2
y − j 2

z , (2.9d )

p(eq)
xy = jxjy, p(eq)

yz = jyjz, p(eq)
xz = jxjz, (2.9e)

π(eq)
xx = − 1

2
p(eq)

xx , π(eq)
ww = − 1

2
p(eq)

ww , (2.9f )

m(eq)
x = m(eq)

y = m(eq)
z = 0. (2.9g)

With the above equilibria, the LB system of (2.1) leads to the incompressible Navier–
Stokes equations in the limit of small Mach number and large system size (d’Humières
et al. 2002; Junk, Klar & Luo 2005).

With the equilibria given by (2.9), the speed of sound cs , the shear viscosity ν

and the bulk viscosity ζ in the D3Q19 model are given by (Lallemand & Luo 2000;
d’Humières et al. 2002; Lallemand & Luo 2003)

cs =
1√
3
c, ν =

1

3

(
1

sν

− 1

2

)
cδx, ζ =

2

9

(
1

sζ

− 1

2

)
cδx, (2.10)

where sν = s9 = s13 and sζ = s1. The freedom to independently adjust the bulk viscosity
ζ = ζ (sζ ) is a primary reason for the superior stability of the MRT–LB models. For
the D3Q19 model with the popular lattice Bhatnagar–Gross–Krook (BGK) collision
model, ζ =2ν/3. For high-Reynolds-number flows, the shear viscosity ν is very small,
and the bulk viscosity in the lattice BGK model may be too small for the code to
be stable. In contrast, the bulk viscosity ζ in the MRT–LB model is independent of
the shear viscosity ν, and thus can remain as a constant to satisfy stability conditions
(Lallemand & Luo 2000; d’Humières et al. 2002).

The LBE can be seen as a finite difference method with central-differencing and
explicit time integration (Junk & Klar 2000; Junk 2001), and it is formally second-
order accurate in space (Junk et al. 2005). The reasons for us to use the LBE in
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Figure 1. Schematic sketch of the geometry for a circular vortex ring approaching
a plane wall.

this study are as follows. First, the LB algorithm is easy to implement. Secondly, the
LB method is conservative, because both the collision and the advection processes,
which are defined by the right-hand side and the left-hand side of (2.1), respectively,
conserve mass and momentum exactly. In addition, the LB method has relatively
low numerical dissipation and dispersion compared to conventional Navier–Stokes
solvers of formally equal or even higher order of accuracy, as shown by using von
Neumann analysis (Lallemand & Luo 2000, 2003; Marı́e, Ricot & Sagaut 2009).
This is related, in part, to the fact that the LBE employs stencils larger than those
used in conventional second-order schemes. For example, in two dimensions the
minimum number of stencil points in the LBE is seven on a triangular lattice, and
nine on a square lattice, as opposed to five for conventional computational fluid
dynamics schemes on a square lattice. And finally, the code used in this study has
been extensively validated and verified and has been proved to be an effective and
efficient method for direct numerical simulations of vortex-dominated flows (Soo &
Menon 2004; Cheng, Yao & Luo 2006; Cheng & Luo 2007; Cheng, Lou & Lim 2009;
Peng et al. 2010).

2.2. Flow configuration, boundary and initial conditions

In this work, the dimensions of the computational domain in the x, y and z directions
are L, W and H , respectively. The rectangular computational domain is discretized
by a uniform mesh of size Nx × Ny × Nz, where Nx and Ny are two lateral dimensions
of the mesh in two horizontal directions x and y, and Nz is the dimension in the
vertical direction z. A vortex ring of radius r0 is initially placed at a distance z = z0

from a flat wall at z =0, as illustrated in figure 1. The vortex ring is given a constant
initial velocity that points to the flat wall with an angle θ .

The initial vorticity distribution of the vortex ring is assigned by a Gaussian
function (Orlandi & Verzicco 1993), for which the velocity field is specified by the
circulation Γ of the ring as follows:

u0 =
Γ

2πσ

[
1 − e−(σ/σ0)

2]
ϑ̂, (2.11)

where ϑ̂ is the unit vector tangential to circulation circles about the ring core,
σ is the radial distance from the centre of the core, σ0 is the initial core radius
and σ0/r0 = 0.21. The initial translational speed of the ring can be estimated as
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(Lamb 1932)

us =
Γ

4πr0

(
ln

8r0

σ0

− 1

4

)
. (2.12)

No-slip boundary conditions are imposed for the flat wall located at z = 0, which
can be realized in the LBE by the bounce-back boundary conditions (d’Humières et al.
2002), in which all particles colliding with a solid wall reverse their momenta, i.e.

fı̄ = fi, (2.13)

where fı̄ is the distribution function of the velocity cı̄ := −ci . The constant-pressure
boundary conditions are applied at x = 0, x = L, y = 0, y = W and z = H , by imposing
the equilibrium distributions

fi = f
(eq)
i (ρ = ρ̄, u), (2.14)

where the constant-pressure condition is realized through the equation of state
p = ρc2

s , and the velocity field u at boundaries is updated from the flow domain
(Mussa, Asinari & Luo 2009; Verhaeghe, Luo & Blanpain 2009). Similarly, the
initial conditions can be realized by imposing the following equilibrium distribution
functions f

(eq)
i (ρ̄, u0), where u0 is given by (2.11).

We define the dimensionless position R, vorticity Ω , time T , pressure P and
Reynolds number Re, as follows:

R :=
r
r0

, Ω :=
ωr2

0

Γ0

, T :=
Γ0t

r2
0

, P :=
r2
0 (p − p∞)

ρ̄Γ 2
0

, Re :=
2usr0

ν
, (2.15)

where r = (x, y, z) is the spatial vector in the Cartesian coordinates system,
ω = (ωx, ωy, ωz) is the vorticity and Γ0 and us are the initial circulation and
translational speed of the ring, respectively.

2.3. Code validation

We will validate our LB code by a comparison with the existing results for a vortex
ring impacting a wall at normal incidence (θ = 0◦) in viscous incompressible fluid
(Walker et al. 1987; Verzicco & Orlandi 1994; Chu et al. 1995). The Gaussian ring
is initially placed at the vertical position z0 = 3r0, where the initial conditions are
determined experimentally (Chu et al. 1995).

We observe that as long as L = W > 10r0, where r0 is the initial radius of the vortex
ring (cf. figure 1), the effect due to a finite domain size is negligible. This observation is
consistent with some of the previous results (Orlandi & Verzicco 1993; Liu 2002). We
find that the computational domain size L × W × H = 12r0 × 12r0 × 7r0 is sufficiently
large, and that a larger domain size changes the results very little. Therefore, we will
use the computational domain size of L × W × H = 12r0 × 12r0 × 7r0 unless otherwise
stated.

We conduct a grid convergence study using four different mesh sizes defined by
the initial radius of the ring, r0 = 20δx , 25δx , 30δx and 40δx , for the case of normal
incidence (θ = 0◦) and Re = 1000. In figure 2, we show the grid-resolution dependence
of the vorticity contours in the xz plane of symmetry at the times T =6.0 and T =14.0.
As the resolution increases, the peak values of the vorticity on the symmetry plane,
|Ωy |max , corresponding to the four grid sizes, are 12.0427, 12.9219, 13.3654 and 13.5318
at T = 6.0. When T = 14, the values of |Ωy |max are 13.8214 and 14.0162, corresponding
to resolutions of r0 = 30δx and 40δx , respectively. By comparing the intensities and
locations of the primary, secondary and tertiary vortices, as well as the small-scale
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Figure 2. Comparison of vorticity contours in the xz plane of symmetry for a vortex ring
impinging on a wall at θ = 0◦ and Re = 1000. (a) r0 = 20δx , T = 6; (b) r0 = 25δx , T = 6;
(c) r0 = 30δx , T = 6; (d ) r0 = 40δx , T = 6; (e) r0 = 30δx , T =14; (f ) r0 = 40δx , T =14.

vortices, obtained by using these two meshes, we note that the quantitative differences
in these results due to mesh size are small. For example, the value of |Ωy |max varies
by less than roughly 2 % between r0 = 30δx and r0 = 40δx . Unless otherwise stated, we
will use the resolution r0 = 30δx for the simulations in what follows.

We have also checked the effects on the results due to the aspect ratios of
the computational domain and the perturbation wavenumber. We note that the
perturbation of the azimuthal wavenumber four is generated naturally by the
rectangular domain, although no initial perturbation is included in the simulations.
The numerical perturbations of four-fold symmetry have been observed previously
by Verzicco & Orlandi (1994, 1996a), and they do not affect essential features of the
vortex flow at low Reynolds number Re � 1000, which we have also independently
verified in this work. To investigate the effects due to perturbations, we carry out the
simulations for the flow with Re = 500 and θ = 30◦ subjected to different perturbations.
We add a sine wave perturbation in the azimuthal direction, with an amplitude
ε = 0.02r0 ≈ 0.095σ0, and the wavenumber n= 5 and 6. We show, in figure 3, the
vortex patterns for the unperturbed and perturbed flows at two different times, T =5
and 20. We can see that the perturbations do not change essential large-scale flow
features, such as the helical structure of the secondary vortex and the secondary vortex
wrapping around the primary one. However, the perturbations do alter flow features
on fine scales comparable to the wavelength of the perturbations and do so only at
a late stage of the flow evolution. Because the perturbation of four-fold symmetry
induced by the Cartesian domain is far weaker than the artificial perturbations, we
can reasonably conclude that the effect induced by perturbations due to a Cartesian
domain is negligible.

To further validate our code, we simulate the case of θ = 0◦ and Re =830. The
evolution of the vorticity iso-surface ‖Ω‖ =2.0 in 5 � T � 15 is shown in figure 4. Our
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(b) (d) ( f )

Figure 3. Vortex patterns for the flow with Re = 500 and θ = 30◦ without and with
perturbation at T =5 (a, c, e) and 20 (b, d, f ): without perturbation (a, b), and with a
perturbation of the azimuthal wavenumber n= 5 (c, d ) and n= 6 (e, f ). The perturbation
amplitude is ε =0.02r0 ≈ 0.095σ0.

Primary vortex ring

Secondary vortex ring Tertiary vortex ring
Separation of boundary layer
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Figure 4. Evolution of vorticity iso-surface ‖Ω‖ = 2.0 for the case of θ = 0◦ and Re = 830.
(a) T =5, (b) T =7, (c) T = 8, (d ) T = 9, (e) T = 11, (f ) T = 15.

simulation clearly captures the generation of both secondary and tertiary vortex rings.
In figure 5, we compare our numerical results with the experimental observations
of Chu et al. (1995) in 3 � T � 11. The essential flow features associated with the
impingement of a vortex ring are accurately reproduced in our simulations, including
the formation of the secondary vortex ring resulting from the roll-up of the separated
boundary layer and the interaction between the primary and the secondary vortex
rings. The agreement is further established quantitatively by the comparison of the
trajectory of the primary vortex ring core with Re = 830 and 1000, as shown in
figure 6. For the case of Re =1000, figure 6 also shows the results obtained with three
grid resolutions r0 = 20δx , 30δx and 40δx . Clearly, the results are convergent to the
experimental data. Overall, the LB results agree quantitatively with the experimental
data of Chu et al. (1995).

3. Results and discussion
In this section we will present our findings for the flow of a vortex ring impacting

on a flat wall with the angles of incidence 0◦ � θ � 40◦ and the Reynolds numbers
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(a) (b)

(c) (d)

(e) ( f )

Figure 5. Evolution of the vortex ring patterns for the case of θ = 0◦ and Re =830. The
experimental data of Chu et al. (1995) (with black background) versus the LB results obtained
in the present study (with white background). (a) T =3, (b) T = 8, (c) T = 5, (d ) T = 9,
(e) T = 7, (f ) T =11.
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Figure 6. The trajectory of the primary ring centre for Re = 830 (a) and 1000 (b). The lines
and symbols present the LB results obtained in this work and the experimental data of Chu
et al. (1995), respectively.

100 � Re � 1000. The influence of the angle of incidence θ and the viscous effect of
the fluid on the evolution of the vortex structure will be investigated by systematically
varying θ and Re in their specified ranges. We will quantitatively analyse the dynamics
of the flow by studying the evolutions of instantaneous vorticity and pressure fields,
and other data generated in our simulations.

We will first present a three-dimensional vortex structure depending on the angle of
incidence θ and the Reynolds number Re, in §§ 3.1 and 3.2, respectively, to qualitatively
illustrate the evolution of the flow, followed by a more quantitative study of



440 M. Cheng, J. Lou and L.-S. Luo

T = 6

T = 8

T = 12

T = 14

T = 18

T = 20

T = 22

T = 6

T = 8

T = 12

T = 14

T = 18

T = 20

T = 22

T = 6

T = 8

T = 12

T = 14

T = 18

T = 20

T = 22

T = 6

T = 8

T = 12

T = 14

T = 18

T = 20

T = 22

(a) (b) (c) (d)

Figure 7. Dependence of the vortex structure evolution on the angle of incidence θ with a
fixed Reynolds number Re = 500. The iso-surface of vorticity ‖Ω‖ = 2 is shown. (a) θ = 0◦,
(b) θ = 10◦, (c) θ = 30◦, (d ) θ = 40◦.

two-dimensional vorticity contours on the symmetric plane of the flow depending
on θ and Re in §§ 3.3 and 3.4, respectively. We further present quantitative results on
effects of θ and Re on the evolution of the vorticity at the vortex core, the trajectories
of the primary vortex centres and the pressure distribution on the symmetric plane
of the flow, in §§ 3.5, 3.6 and 3.7, respectively. We hope these results will collectively
provide a coherent description of the flow.

3.1. Effect of θ on the vortex structure

We first show the dependence of flow patterns on the angle of incidence θ with a fixed
Reynolds number Re. In figure 7 we show the evolutions of vorticity iso-surfaces
with Re =500 and θ = 0◦, 10◦, 30◦ and 40◦. The azimuthal symmetry of the flow is
the most notable feature in the case of θ = 0◦, as shown in figure 7(a). A sequence of
events takes place when the ring is moving close to the wall. First, the ring entrains
surrounding fluids as it is closing in to the wall; and the flow starts to generate a thin
boundary layer at the wall. Second, as the ring moves closer to the wall, it begins to
stretch. And third, after T � 6, the boundary layer undergoes separation and rapid
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growth. As the flow further evolves, due to the radially adverse pressure gradient
generated by the primary vortex ring at the wall and the local vorticity concentration
within the boundary layer, a secondary vortex ring separates and lifts up from the
wall. The interaction between the secondary vortex ring and the primary vortex ring
decelerates the radial expansion of the primary ring and causes the primary ring to
rebound from the wall. After T = 8, the secondary ring is convected inwards to the
centre of the primary ring. It starts to develop azimuthal instabilities and becomes
wavy at T = 12. At the same time, the primary ring further induces an additional
separation of the boundary layer to generate a tertiary ring, which also rolls up from
the wall, and is shed from the boundary at T = 14. Subsequently, the ring–ring and
ring–wall interactions lead to complex three-dimensional topological changes in the
flow. The flow starts to form a vortical structure that resembles hairpin vortices when
T =20. Figure 7(a) clearly captures the entire development process, in which a vortex
ring evolves into multiple small-scale vortices. The vortex patterns shown in figure 7(a)
are typical for the flow of normal impact (θ =0◦) with a moderate Reynolds number.
Our results are consistent with previous observations (Walker et al. 1987; Verzicco &
Orlandi 1994; Chu et al. 1995).

The flow with an oblique angle of incidence θ > 0◦ is asymmetric about the axis
of revolution of the ring. The complex ring–wall and ring–ring interactions for
oblique impacts can be clearly seen from evolutions of vorticity iso-surfaces shown
in figures 7(b), 7(c) and 7(d ), corresponding to θ =10◦, 30◦ and 40◦, respectively.
As the vortex ring is closing in to the wall at an oblique angle, it induces an
asymmetric shear layer on the wall. The shear layer first separates beneath the first
impact point. When the near end of the ring contacts the wall, the boundary layer
rapidly grows and the core of vortex ring is squeezed in the region about the impact
point. This leads to an intense stretching of the ring in the region about the impact
point, while the flow in the region away from the impact point is affected little,
and thus remains almost intact. The stretching intensifies the vorticity, and therefore
creates a non-uniform vorticity distribution along the core, so that the vorticity
difference between the two opposite ends of the ring increases with the angle of
incidence θ . Consequently, the non-uniform vorticity distribution generates a pressure
gradient along the ring core, which pushes fluid away from the impact point along
the circumference on both sides of the ring, as observed experimentally by Lim
(1989). The shear layer induced near the wall rolls up an asymmetric secondary ring.
However, this asymmetry does not significantly affect the overall vortex structure if
the angle of incidence θ is small. For example, when θ = 10◦, the secondary ring is
convected inwards by the velocity field induced by the primary ring after T =8. A
weak tertiary ring is generated subsequently at T =14, as seen in figure 7(b). As the
ring–wall and ring–ring interaction develop, the vortex structure in the later stage
of the impact (T > 20) is qualitatively similar to the case of θ = 0◦, except for the
asymmetry.

When the angle of incidence is increased to θ = 30◦, no tertiary ring is generated.
The secondary ring evolves in a manner that is completely different from the case of
θ � 10◦. With θ = 30◦, the secondary vortex ring begins to wrap around the primary
one at T = 8, as shown in figure 7(c). Later, the rings develop a helical structure, as
observed by Lim (1989) and Verzicco & Orlandi (1994). For the case of θ =40◦, the
vorticity evolution is rather similar to that for the case of θ = 30◦ until T = 20. After
T > 20, the ring begins to break up for θ = 40◦, as shown in figure 7(d ). In contrast,
the ring maintains its integrity for θ = 30◦ up to T = 22, as shown in figure 7(c). A
more detailed discussion of this phenomenon will be given later in § 3.7.
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Figure 8. Dependence of the vortex structure evolution on the Reynolds number Re with
a fixed angle of incidence θ = 20◦. The iso-surface of a constant vorticity ‖Ω‖ = 2 is shown.
(a) Re = 100, (b) Re =500, (c) Re = 1000.

3.2. Effect of Re on the vortex structure

We next report the dependence of flow patterns on the Reynolds number Re with a
fixed angle of incidence θ . Figure 8 shows the flow patterns with θ = 20◦ and Re = 100,
500 and 1000. For the case of the lowest Reynolds number Re = 100, as shown in
figure 8(a), the flow does not generate a secondary vortex ring. Although there is still a
radial adverse pressure gradient, the detachment of the secondary vortex from the wall
does not take place. At this low Reynolds number, the viscous effect diffuses vorticity
and significantly weakens the circulation of the ring. The induced vorticity in the shear
layer is quickly dissipated. The viscous force at the wall inhibits the radial expansion
of the primary ring, and the vorticity at the wall is too weak to generate a secondary
vortex ring. The vortex ring gradually decays into an arch vortex tube at T = 18, as
shown in figure 8(a), before it is completely consumed by the viscous dissipation.
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As the Reynolds number increases, the viscous dissipation becomes weaker, and the
vortex–wall interaction can trigger a series of complex responses in the boundary layer,
as shown in figures 8(b) and 8(c) corresponding to Re = 500 and 1000, respectively.
With Re =500, the process of the secondary vortex ring wrapping around the primary
ring appears, as shown in figure 8(b). The flow is complicated, but has a well-organized
loop-like structure. When the Reynolds number is further increased to 1000, the flow
pattern becomes considerably more complicated, especially after T = 14, as shown in
figure 8(c). Small-scale vortices are generated by the interaction between the secondary
vortex ring and the primary one. When T = 18, the core of the primary ring starts to
break down. Vortex pairs of different sizes are generated, and vortical loops wrapping
around the wavy inner core region are developed, as shown in figure 8(c). After
T � 18, the flow structure at Re = 1000 has gone through a sequence of complicated
topological changes and becomes rather complex with vortices of various sizes.

Our observations can be summarized as follows. With a finite angle of incidence
10◦ � θ � 40◦ and a moderate Reynolds number 100 < Re � 1000, the primary vortex
ring generates secondary and tertiary rings; the secondary ring develops azimuthal
instabilities, and in turn small-scale vortices are generated due to interactions among
the vortex rings. The flow structure undergoes a series of complicated topological
changes during the evolution process. As the angle of incidence increases beyond
a critical value depending on the Reynolds number Re, the primary vortex ring
generates only the secondary ring, which will wrap around the primary one, and then
both rings will evolve to a helical structure later in the process. For example, with
Re =500, we do not observe any tertiary vortices when θ � 20◦. With the angle of
incidence fixed at θ = 20◦, our results show that, as the Reynolds number increases,
the flow around the primary vortex ring becomes more and more unstable. Beyond a
critical Reynolds number of about 200, the flow begins to develop the helical winding
around the circumferential axis of the ring, which appears earlier in time and becomes
stronger as the Reynolds number increases beyond the critical value about 200. Our
results clearly show that the evolution of the vortex–wall interaction strongly depends
on both the Reynolds number Re and the angle of incidence θ .

3.3. Effects of θ on vorticity and unsteady shear layer

In this and the following sections, we will study the evolution of the flow by examining
the vorticity contours in the xz plane of symmetry with different angles of incidence
and Reynolds numbers, as shown in figures 9 and 10. These figures show instantaneous
vorticity distributions of the rings and the shear layer on the wall, which allow us to
quantitatively analyse the dynamics of vortex ring evaluation.

We first investigate the effects of the angle of incidence θ on the vorticity. Figure 9
shows the evolution of vorticity with Re = 500 and θ = 0◦, 10◦ and 30◦, corresponding
to the simulations shown in figures 7(a), 7(b) and 7(c), respectively. For the case
of a normal impact, i.e. θ =0◦, figure 9(a) clearly illustrates the radial expansion of
the primary ring in a radial direction and the production of secondary and tertiary
vortex rings. The primary ring expands radially rather rapidly in the initial stage of
the impact during 6 � T � 8. The radial expansion slows down during 8 � T � 10 and
almost comes to a halt later. The diameter of the primary ring varies from 2.2r0 at
T =4, to 2.51r0 at T =6, 3.49r0 at T = 8, and 3.56r0 at T = 10. Further, the radial
growth rate is about 0.2 in 4 � T � 6, 0.5 in 6 � T � 8 and 0.1 at T = 10. The variations
in the radial expansion rate correspond to different stages of the impact process. As
the vortex ring moves closer the wall when T � 6, the entrained fluid forces the ring
to expand its diameter rather quickly, while the core of the ring shrinks so that the
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Figure 9. Dependence of the vorticity contours in the xz plane of symmetry on the angle
of incidence θ with a fixed Reynolds number Re = 500, corresponding to figure 7. Positive
and negative vorticity are represented by solid and dashed lines, respectively. Contours are
plotted in the range of |Ωy | � 5 with a level interval of �Ωy = 0.5. (a) θ = 0◦, (b) θ = 10◦,
(c) θ = 30◦.

total volume of the ring is preserved. When the ring hits and then interacts strongly
with the wall in 6 � T � 8, the boundary layer grows rapidly and then separates; the
radially adverse pressure gradient helps to eject the vorticity to form a secondary
vortex ring. Because the circulation of the secondary ring is opposite to that of the
primary ring, the flow induced by the secondary ring decelerates the radial expansion
of the primary ring. The primary ring rebounds from the wall while interacting with
the secondary ring; the interaction between the primary and secondary rings also
leads to cancellation of their vorticity. The vorticity ratio of the secondary to primary
rings in their centres decreases monotonically in time: from 0.68 at T =8, to 0.39 at
T = 10 and then to 0.22 at T =18. As the secondary ring is convected inwardly by
the flow field which has been induced by the primary ring, its detachment from the
wall forms a sheet wrapping around the primary ring and, later, an elongated region
of concentrated secondary vorticity. A tertiary vortex ring is generated when T ≈ 18.
The process of generating new subvortex rings does not continue indefinitely, because
the strength of the primary vortex is continuously weakened by viscous dissipation
during the ring–wall and ring–ring interactions. Both the core size and the vorticity
strength at core centre of the primary ring decrease in time; when T =22, the core size
and the vorticity strength are reduced by 50 % and 60 %, respectively. The subvortex
generation would take place only when the primary ring is strong enough, that is, in
the early stage of the impact. Although the secondary ring also impacts the wall and
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Figure 10. Dependence of the vorticity contours in the xz plane of symmetry on the Reynolds
number Re with a fixed angle of incidence θ = 20◦, corresponding to figure 8. Positive
and negative vorticity are represented by solid and dashed lines, respectively. (a) Re = 100,
(b) Re = 250, (c) Re = 500.

ejects vorticity from the wall, it is too weak to generate a new subring. The secondary
ring is eventually absorbed into the boundary layer, as is clearly shown in figure 9(a).

With the angle of incidence θ = 10◦, the overall flow evolution is similar to that of
θ =0◦, apart from the lack of the perfect rotational symmetry, as shown in figure 9(b).
With this small angle of incidence, the time delay between the near end and far end
of the ring impinging on the wall is not long enough to qualitatively alter the flow
pattern. The evolution of the ring diameter follows the same trend as that of θ =0◦.
The radial expansion is rather rapid during the initial stage of the impact, then slows
down after the secondary vortex ring is fully formed. The rate of the radial expansion
varies from about 0.2 in 4 � T � 6, to 0.4 in 6 � T � 8, and finally 0.15 at T = 10. In
contrast to the case of normal impact, shown in figure 9(a), the radial expansion for
the case of θ = 10◦ is slightly slower when the ring is touching the wall, but is faster
after the ring bounces from the wall, as shown in figure 9(b). With an oblique angle
of incidence, the plane of the ring is tilted with respect to the wall; therefore, the
expansion force is reduced because it has a component normal to the wall at the near
end, which is blocked by the wall. Consequently, the vortex core at the first impact
point is compressed and the vorticity is intensified, while the radial expansion force
is weakened. The boundary-layer separation and the ejection of secondary vorticity
take place earlier at the near end, marked by ‘A’ in figure 9(b), than at the far end of
the ring, marked by ‘B’ in figure 9(b). The radial expansion is still going on at the far
end, but has stopped at the near end. Also, the ring can expand more freely at the
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far end because it tilts upwards, away from the wall, while the opposite is true at the
near end. As a result, the radial expansion is slightly slower at first, and then slightly
faster after T =8, than the case of normal incidence.

When the angle of incidence is increased to θ = 30◦, the essential flow features are
qualitatively different from those with smaller angles of incidence θ � 10◦, because the
time delay between the near end and the far end impacting the wall is considerably
longer now. As shown in figure 9(c), the times when the near end and the far end touch
the wall are about T = 6 and 10, respectively. During this time period of 6 � T � 10,
the ring core at the near end is severely compressed and the vorticity at the core
centre is strengthened by 20 %. Due to intense stretching, the core becomes so thin
that the ring cannot produce a secondary vortex to be shed from the wall. Instead, it
generates small-scale vortices at the wall, which form a vorticity layer around the near
end. Subsequent interaction between the secondary vorticity layer and the primary
ring leads to cancellation of vorticity, hence weakens vorticity. When T = 10, the far
end of the ring impacts the wall and the ring expands radially faster, because the
expansion force tilts upwards with the angle θ with respect to the wall, and thus is
not impeded by the wall. Subsequently, a secondary vortex is generated which then
moves around the primary ring from the bottom upwards away from the wall. The
radial expansion rate varies from about 0.18 in 6 � T � 8, to 0.32 in 8 � T � 10 and
to 0.2 at T = 16.

We observe that the radial expansion rate during the impact decreases as the oblique
angle θ increases. When the primary ring impacts on the wall, a vorticity gradient
is generated roughly along its core axis, which affects not only the vorticity strength
of the primary ring, but also the vortex structure, as shown in figures 7(b) and 7(c).
This vorticity gradient is the driving mechanism responsible for the secondary vortex
wrapping around the primary ring.

3.4. Effects of Re on vorticity and unsteady shear layer

We now investigate the effect of the Reynolds number Re on the flow with a fixed angle
of θ . Figure 10 shows the vorticity evolution at a fixed angle of θ = 20◦ and Re = 100,
250 and 500 to demonstrate the effect due to the Reynolds number alone. Clearly, the
higher the Reynolds number, the weaker the viscous dissipation; hence the stronger
the primary vortex when the ring impacts the wall. The secondary vortex is generated
only when the Reynolds number is larger than a critical value depending on the angle
of incidence θ . We estimate that the critical Reynolds numbers corresponding to
θ = 10◦ and 20◦ are about 100 and 200, respectively. As the Reynolds number further
increases beyond the critical value, the secondary vortex becomes stronger, moves
faster and detaches from the wall sooner, as is clearly shown in figures 10(b) and 10(c).
There are several competing forces in the flow: the radial expansion force induced by
the fluid entrained to the middle of the ring, the pressure gradient due to the non-
uniform vorticity distribution along the ring circumference, the friction on the wall,
and the viscous force in the flow. These forces all strongly depend on both the
Reynolds number and the angle of incidence, and it is the competition among these
forces that leads to the complex flow phenomena.

3.5. Evolution of the vorticity at the vortex core

We show, in figure 11, the evolution of the y component of the vorticity, Ωy , and
its normalized rate of change, (dΩy/dT )/Ωy , at the primary vortex centres on the
xz plane of symmetry for Re = 100 and 500 and with θ =0◦, 10◦ and 30◦. When
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Figure 11. Time evolution of the vorticity and its rate of change at the centre of primary
ring in the xz plane of symmetry at different θ . (a, b) Re = 100, (c, d ) Re = 500.

the Reynolds number Re =100, as shown in figures 11(a) and 11(b), for Ωy and
(dΩy/dT )/Ωy , respectively, the angle of incidence θ has little effect on the vorticity
values at the ring centres. Only for the case of θ = 30◦ can the asymmetry of the
flow be clearly seen in the evolution of the vortex-centre vorticities. The values of
Ωy at the vortex centres of the near end and the far end behave similarly: their
magnitudes |Ωy | at the near-end and far-end vortex centres decrease monotonically
in time, with a faster rate initially (until T =5), then at a slower rate. The evolution
of the vorticity magnitudes depends very weakly on the angle of incidence θ , because
viscous dissipation dominates the flow at low Reynolds numbers.

With Re = 500, the flow is qualitatively different from the case of Re = 100, as shown
in figures 11(c) and 11(d ). The evolution of the vorticity magnitudes depends strongly
on the angle of incidence θ in this case. The asymmetry of the flow is clearly seen,
and the evolution of the vorticity magnitudes is no longer monotonic. With θ � 10◦,
the magnitudes of Ωy at the two vortex centres on the xz plane first decrease up to
T =5, then increase, and after attaining their maxima at about T = 8, they decrease
again at slower rates. With θ =30◦, the magnitude of Ωy at the near-end core centre
(labelled ‘L’ in the figure 11) first decreases before T = 5, then increases very slowly
until T = 12, and then decreases at a faster rate. The magnitude of Ωy at the far-end
core centre (labelled ‘R’ in figure 11) first goes through irregular decrease–increase
oscillations, then reaches a maximum which is very close to its initial value at about
T =14, when the secondary vortex ring is about to detach from the wall, and finally
decays monotonically after T > 14. The fact that at T = 14 the magnitude of Ωy at
the far-end core centre almost recovers to its initial value indicates that vorticity is
indeed transported to the far end, as discussed previously.
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Figure 12. The dynamics of vortex stretching and ring expansion at the near end and far
end of the ring, with Re = 100 and 500 and θ = 0◦ and 10◦. We compute dS/dT , dΘ/dT and
Φ as functions of time T at the near end and far end of the vortex ring. (a, b) Re =100
and the vortex ring is defined by ‖Ω‖ = 3.5; (c, d ) Re = 500 and the vortex ring is defined by
‖Ω‖ = 7.5. (a, c) θ = 0◦; (b, d ) θ = 10◦.

To quantitatively study the dynamics of vortex stretching and ring core expansion,
we compute the following quantities at the near end and far end of the ring: (i)
the rate of change of the ring core circumference, dS/dT , where S = πD is the
ring circumference and D is the ring diameter; (ii) the rate of change of the centre
vorticity strength Θ , dΘ/dT ; and (iii) Φ := ŝ · (Ω · ∇)u, where ŝ is the unit vector
along the ring core. We first define a ‘vortex ring’, which is a torus, by using a
constant iso-surface ‖Ω‖ = constant, and circumference S is defined by the centre
core of the torus. On the symmetric xz plane, the contour of ‖Ω‖ = constant defines
the area A of the ring cross-section, and we use Θ = Ω · ŝA= |Ωy |A to approximate
the ring-centre vorticity strength at the both ends of the ring. On the symmetric xz

plane of the ring, we also have

Φ = ŝ · (Ω · ∇)u = ( ŷ · ŝ)(Ω · ∇)uy, (3.1)

which is directly related to the vortex stretching Ω · (Ω · ∇)u. In figure 12 we show
the results of dS/dT , dΘ/dT and Φ at the near end and far end for 0 � T � 8 with
Re = 100 and 500, and θ = 0◦ and 10◦. The stretching is slower initially, as is shown
by the dynamics of dS/dT and Φ , and the vorticities at the near end and far end are
weakened monotonically by the viscous effect to reach their minima during this period



Numerical study of a vortex ring impacting a flat wall 449

3.5 4.0 4.5 5.0

0.5

1.0

1.5
θ = 0°
θ = 10°
θ = 30°

θ = 0°
θ = 10°
θ = 30°

θ = 0°
θ = 10°
θ = 30°

θ = 0°
θ = 10°
θ = 30°

(a) (b)

(c) (d)

6 7 8 9

3.5 4.0 4.5 5.0 6 7 8 9

X

Z

0.5

1.0

1.5

Z

0.5

1.0

1.5

0.5

1.0

1.5

X

Figure 13. The trajectory of the vorticity centres of the primary ring in the xz plane of
symmetry at different θ . The hollow and solid symbols denote the centres at the near end (a, c)
and the far end (b, d ), respectively. Re = 100 (a, b) and 500 (c, d ).

of time, as shown by the dynamics of dΘ/dT . As the ring moves closer to the flat
plate, the ring expands radially with a faster rate, while the vorticities at both the near
end and far end strengthen until they reach their maxima and then weaken again (cf.
figure 11). The higher the Reynolds number is, the weaker is the viscous resistance
force; hence the faster the ring approaches the plate, the sooner dΘ/dT reaches its
minimum, as is clearly seen in figure 12. Also, the higher the Reynolds number is,
the greater is the variation of dΘ/dT , and the more asymmetric dΘ/dT becomes
when θ > 0◦.

We observe that dΘ/dT remains negative when Re = 100, indicating viscous dissi-
pation is the dominant effect. When Re = 500, dΘ/dT is negative initially but becomes
positive after T > 5, indicating thickening of the ring about its core, i.e. increase of σ ,
when the ring is closing in to the flat plate. After reaching its peak, dΘ/dT is expected
to decay and becomes negative eventually. The vorticity stretching related quantity
Φ increases monotonically to its peak and then decays monotonically; and Φ peaks
at approximately the same times as dΘ/dT . The dynamics of dS/dT , dΘ/dT , and
Φ all consistently corroborate with that of the vorticity Ωy shown in figure 11.

3.6. Trajectories of the primary vortex centres

The trajectories of the primary vortex centres in the xz plane of symmetry with
Re =100 and 500 and different θ are shown in figure 13. With Re = 100, most
trajectories move down first and then outwards and slightly up, except for the near-
end centre with θ = 30◦. With θ =30◦, after moving down and outwards, the near-end
centre moves inwards to the ring centre due to collective effects of the viscous force
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Figure 14. The θ -dependence of the velocity field on the xz plane of symmetry
for Re = 500. (a) θ = 0◦, (b) θ = 10◦, (c) θ = 20◦.
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Figure 15. The θ -dependence of the pressure field on the xz plane of symmetry for Re =500,
corresponding to the velocity field in figure 14. Solid and dotted lines represent the positive
(pushing) and negative (suction) pressures, respectively. The pressure contours are plotted in
the range of |P | � 0.1 with a level interval of �P = 0.01. (a) θ =0◦, (b) θ = 10◦, (c) θ = 20◦.

and the adverse pressure gradient along the toroidal axis, which inhibit the ring
expansion and weaken the vorticity at the near end. The lowest positions reached by
the vortex core centres depend on the angle of incidence θ . The vortex core centre
reaches its lowest position Zmin = 0.52, 0.46 and 0.38 at the near end, and Zmin =0.52,
0.61 and 0.82 at the far end, for θ = 0◦, 10◦ and 30◦, respectively.

With Re = 500, the vortex centre trajectories are more complicated because of the
secondary vortex rings, which are absent in the case of Re = 100. The interaction
between the primary and secondary vortex rings results in non-monotonous motion
of the vorticity centres, shown as kinks and loops in figures 13(c) and 13(d ).

3.7. Pressure distribution

Figures 14 and 15 show the evolution of the velocity field and the pressure contours,
respectively, on the xz plane of symmetry with a fixed Reynolds number Re =500
and θ = 0◦, 10◦ and 20◦. The velocity and pressure fields are directly correlated to
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Figure 16. Dependence of the pressure distribution P (X) on the wall surface and along the
x-axis in the xz plane of symmetry on Re and θ . Re =100 (a–c), Re = 500 (d–f ), and Re =1000
(g–i ). (a, d, g) θ = 0◦, (b, e, h) θ = 10◦, (c, f, i ) θ = 30◦.

the vorticity field shown in figures 9 and 10. The negative pressure resides mostly
in the core regions of the ring. The pressure is high in high-strain regions and
low in high-vorticity regions. It is the vortex–wall and/or vortex–vortex interactions
that generate high strain rates, which in turn generate positive pressure. Strong flows
develop around the vortex core due to the pressure gradient between intense and weak
vorticity regions. The low-pressure region shrinks as the primary ring decelerates and
decays. The deceleration is the result of both viscous dissipation and entrainment
of surrounding fluids. As the angle of incidence θ increases, the flow becomes more
asymmetric; the vorticity is more intense at the far end and weaker at the near end.
The disparity between the vortex strengths at the two ends depends on both the angle
of incidence θ and the Reynolds number Re.

For an oblique impact, a pressure gradient along the ring core generates a convective
motion responsible for the transport of the secondary vorticity from the near end of
the ring to the far end. Therefore, the behaviour observed previously in figures 7(b)
and 7(c) can be explained as follows. When the ring interacts with the wall, the
stretching is different along the core due to the asymmetry of the flow: the stretching
rate in the near-end region is higher than that at the far end, hence a pressure gradient
along the toroidal axis is generated. This pressure gradient induces a convection from
the near-end region to the far-end region, resulting in an accumulation of secondary
vorticity in the far-end region and the formation of a vortex loop, which moves
away from the wall. In the mean time, viscous diffusion is accompanied with the
fluid motion driven by the pressure gradient, which weakens vorticity, and eventually
breaks the primary ring in the near-end region.

The evolution of the pressure distribution P (X) on the wall surface along the x-axis
on the xz plane of symmetry is presented in figure 16 for Re = 100, 500 and 1000, and
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θ

Re 0◦ 10◦ 30◦

100 0.326 0.305 0.183
500 0.442 0.421 0.294

1000 0.475 0.452 0.321

Table 1. Dependence of the maximum stagnation pressure on θ and Re,
corresponding to figure 16.

θ = 0◦, 10◦ and 30◦. For all the cases with different θ and Re shown in figure 16, the
pressure distribution P (X) on the wall surface shows quantitatively one of the most
prominent features of the flow: the radially adverse pressure gradient at the centre of
the ring, which is responsible for the radial expansion of the ring.

For the case of low Reynolds number Re = 100, when the ring approaches the
wall, it induces a region of radially adverse pressure gradient on the wall, which is
clearly shown in the top row of figure 16. This pressure gradient does not significantly
affect the overall characteristics of the flow structure because the viscous diffusion
quickly destroys vorticity at this low Reynolds number. The interaction between the
primary vortex ring and the wall does not produce any secondary rings. As the angle
of incidence θ increases, the maximum value of the pressure at the stagnation point
decreases, and the suction pressure increases on the near end and decreases on the
far end.

With Re =500, the results of P (X) are shown in the middle row of figure 16.
The variation of pressure on the wall at θ = 0◦ is similar to the observation of Chu
et al. (1995). As shown in the figure, the pressure reaches its maximum value in the
ring centre at T ≈ 6, when the primary vortex ring is in its early stage of stretching.
Meanwhile, a region of adverse pressure gradient develops, which alters the existing
vorticity distribution in the boundary layer and has a significant effect on its later
development. Rapid variations of the pressure gradients in the regions of 3 <X < 5
and 7 <X < 9 are associated with the boundary layer separation and the formation of
secondary vortices. This is correlated with the ring–wall interaction shown in figure 10.
As the angle of incidence θ increases, the stagnation moves to the near end of the
ring. The stagnation pressure reduces by about one third, from 0.44 to 0.29, when θ

increases from 0◦ to 30◦. We note that the magnitude of pressure variations increases
significantly at the near end and decreases at the far end as the angle of incidence θ

increases.
The pressure distribution P (X) at Re = 1000 is shown in the bottom row of

figure 16. Comparing with the results of lower Reynolds numbers, we can clearly see
that magnitudes of both the stagnation pressure and the variation of the pressure
gradients in the regions of the ring–wall interaction increase as Re increases. The
values of the maximum pressure on the wall at different θ and Re are summarized in
table 1.

4. Conclusions
In this work, we numerically study the vortex ring impacting a flat wall with an

oblique angle of incidence 0◦ � θ � 40◦ and the Reynolds number 100 � Re � 1000.
We quantify the effects of both the Reynolds number Re and the angle of incidence
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θ on the evolution of the vortex structure and the hydrodynamic forces on the
wall. We present the vortex structure in three dimensions, the vorticity contours
on the symmetric xz plane of the ring–wall flow, the evolution of the vortex
centre vorticities, the trajectories of vortex centres, the pressure and velocity fields
on the symmetric xz plane and the wall-surface pressure distribution P (X) along
the x-axis. Our results not only confirm the initial structure of secondary vortex
formation and shedding observed previously, but also reveal some interesting three-
dimensional features of the flow of vortex ring–wall interaction with a oblique angle of
incidence θ .

There are several competing factors interacting in the flow of a vortex ring impinging
on a flat wall: the radially adverse pressure gradient induced by the fluid entrained
by the ring in the proximity of the wall, the vortex stretching, the boundary layer
generated by the ring–wall interaction, the pressure and vorticity gradients along the
ring diameter due to oblique asymmetry and, finally, the viscous dissipation. The
interactions among these forces lead to the following scenarios. First, in the low-
Reynolds-number region Re < 100, the ring–wall interaction dissipates the ring. No
secondary rings are generated. Second, when the Reynolds number is moderately high,
i.e. Re > 100 and for oblique angles of incidence 0◦ � θ < 20◦, the flow generates a
secondary ring, and even a tertiary one at higher Reynolds numbers and smaller angle
of incidence. The asymmetry due to the non-zero angle of incidence does not alter the
essential feature of the flow. The secondary ring rolls up and is convected inwards to
the centre area of the primary ring. The secondary ring develops azimuthal instabilities
when the Reynolds number is sufficiently high, and the ring–ring interaction generates
hairpin-like small-scale vortices in the late stage of the evolution. Finally, when the
oblique angle of incidence θ is large enough and the Reynolds number is moderately
high, a vorticity gradient is generated along the diameter of the ring between the
near-end and the far-end regions. This gradient strengthens the vorticity at the far-end
region at the expense of vorticity at the near-end region. The flow develops a helical
structure winding around the circumferential axis of the primary ring, the secondary
ring wraps around the primary one and they bounce away from the wall before
a tertiary ring can be created. This structure of the secondary vortexes wrapping
around the primary ring is fundamentally different from the structure with tertiary
rings at a smaller angle of incidence. With a sufficiently large angle of incidence θ ,
due to the vorticity gradient, the vorticity propagation along the ring diameter is so
strong that the vorticity at the near end of the primary ring is completely consumed
during the impact process. Consequently, the primary ring breaks up and becomes
an arc.

In conclusion, the flow of a vortex ring interacting with a flat wall has exhibited
rich dynamic behaviours which strongly depend on both the Reynolds number Re
and the angle of incidence θ . Within the parameter ranges of 100 � Re � 1000 and
0◦ � θ � 40◦, we observe a range of interesting flow phenomena including viscous
decay, generation of secondary vortex rings, instabilities due to vortex–wall and
vortex–vortex interactions, vortex breaking and reconnection. These observations will
help us extend our understanding of flows with vortex–wall interactions in more
complicated circumstances.
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